Problem #1

Known:

All required parameters.

Schematic:

Air flow

Plastic wrap

Biomaterial

Find:

Depth of freezing as function of time.

Strategy:

In these simplified analysis for freezing time, as was done in class for a slab geometry, we equate the rate of heat transfer through the already frozen layer to the rate at which heat needs to be removed to freeze an additional layer. The analysis here is exactly same as that done for a slab, with the only difference being the resistance here is not just of that of the frozen layer but also the plastic wrap in series with the frozen layer.

Solution:

1)
\[
\frac{T_m - T_\infty}{\Delta H_f \rho} = \left(\frac{L_{\text{plastic}}}{k_{\text{plastic}}} + \frac{x}{k_{\text{frozen}}} + \frac{1}{h} \right) \frac{dx}{dt}
\]

\[
\int_0^t \frac{T_m - T_\infty}{\Delta H_f \rho} \, dt = \int_0^{t_\text{f}} \left(\frac{L_{\text{plastic}}}{k_{\text{plastic}}} + \frac{x}{k_{\text{frozen}}} + \frac{1}{h} \right) \, dx
\]

\[
\frac{T_m - T_\infty}{\Delta H_f \rho} \, t = \frac{L_{\text{plastic}}}{k_{\text{plastic}}} x + \frac{x^2}{2k_{\text{frozen}}} + \frac{x}{h}
\]

\[
\frac{T_m - T_\infty}{\Delta H_f \rho} \, t = \frac{L_{\text{plastic}}}{k_{\text{plastic}}} L_{\text{bio}} + \frac{L_{\text{bio}}^2}{2k_{\text{frozen}}} + \frac{L_{\text{bio}}}{h}
\]

\[
t_{\text{freeze}} = \frac{\Delta H_f \rho}{T_m - T_\infty} \left(\frac{L_{\text{plastic}}}{k_{\text{plastic}}} L_{\text{bio}} + \frac{L_{\text{bio}}^2}{2k_{\text{frozen}}} + \frac{L_{\text{bio}}}{h} \right)
\]

2) It will add an extra layer of conductive resistance that increases the time to freeze.
Problem #2

Known:
Reflectivity = 0; \(T_1=303 \text{ K}\); \(T_2=288 \text{ K}\); \(T_g=293\text{K}\); \(T_\infty=283\text{K}\); \(I = 1000 \text{ W/m}^2\); \(h_o=5 \text{ W/m}^2\text{K}\)

Schematic:

Find:
\(h_i, T_i\)

Strategy:
There are two separate problems here. First, we need to find the inside heat transfer coefficient. To calculate convective heat transfer coefficient, we follow the steps provided in the course notes for this chapter. Although the surface is inclined, equation for vertical surface can be used, as mentioned.

For the second part of the problem, follow the steps provided in the course notes for solving a radiative energy balance problem. Note the transmissivity given for glass which would be needed for all radiative exchange terms.

Solution:

1)
\[Nu_L = \frac{hL}{k} = \left(0.825 + \frac{0.387 R_{a_L}^{1/6}}{1 + (0.492/Pr)^{8/27}} \right)^2 \]

\[Ra_L = Gr \times Pr \]

\[Gr = \frac{\beta g \rho^2 L^3 \Delta T}{\mu^2} \]

\[\Delta T = 30 - 20 = 10K \]

\[\beta = \frac{1}{298} = 0.00336 \frac{1}{K} \]

\[L = 4m \]

Properties should be evaluated at \(\frac{1}{2}(30+20) = 25, \) (i.e. 298 K). Assume properties at 300 K for simplicity.

\[Pr = 0.708 \]

\[\rho = 1.1769 \frac{kg}{m^3} \]

\[\mu = 1.8465 \times 10^{-5} \frac{kg}{m \cdot s} \]

\[k = 0.026 \frac{W}{mK} \]

\[Gr = \frac{0.00336 \cdot 9.81 \cdot 1.1769^2 \cdot 4^3 \cdot 10}{(1.8465 \times 10^{-5})^2} = 8.56 \times 10^{10} \]

\[Ra_L = 8.56 \times 10^{10} \times 0.708 = 6.06 \times 10^{10} \]

\[h = \frac{4}{0.026} \left(0.825 + \frac{0.387 \cdot (6.06 \times 10^{10})^{1/6}}{1 + (0.492/0.708)^{8/27}} \right)^2 = 447.5 \]

\[h = 2.91 \frac{W}{m^2 K} \]

2)

\[F_{0-0.28303} - F_{0-0.28303} = F_{0-0.848} - F_{0-0.848} = 2 \times 10^{-5} - 0 \approx 0 \]

\[\Rightarrow \tau = 0 \]

\[\rho = 0, \quad \alpha + \tau + \rho = 1 \Rightarrow \alpha = 1 = \varepsilon \]

Hence, the glass can be considered a black body
An alternate way to say this is that $\lambda_{\text{max}} T = 2897.6 \, \mu\text{mK}$. Thus, for the inside surface temperatures around 303 K, $\lambda_{\text{max}} = 9.56 \, \mu\text{m}$ for which the glass has zero transmissivity and therefore an absorptivity of 1.

3)

\[
\text{In-Out+Generation-Consumption}=\text{Storage}
\]

\[
\begin{align*}
1000 \cdot 0.866 \cdot (1 - \tau) &= h_{\text{forced}} \left(T_{\text{glass}} - T_{\text{air}} \right) - h_{\text{natural}} \left(T_{\text{glass}} - T_{\text{air}} \right) - F_{1-2} \sigma \left(T_{\text{glass}}^4 - T_{3}^4 \right) - F_{1-3} \sigma \left(T_{\text{glass}}^4 - T_{2}^4 \right) + 0 = 0 \\
\tau &= F_{0-2.85800} - F_{0-0.285800} = F_{0-16240} - F_{0-1624} = 0.975 - 0.02 = 0.955 \Rightarrow \alpha = 0.045 \\
F_{1-2} &= F_{1-3} = \left(1 - \sin \left(\frac{60}{2} \right) \right) = 0.5 \\
1000 \cdot 0.866 \cdot 0.045 - 5 \left(30 - 10 \right) - 2.91 \left(\left(30 + 273 \right) - T_{\text{air}} \right) - 0.5 \left(5.67 \times 10^{-8} \right) \left(303^4 - 288^4 \right) - 0.5 \left(5.67 \times 10^{-8} \right) \left(303^4 - 293^4 \right) &= 0
\end{align*}
\]

4)

$T = 349.4 \text{K} = 76.4^\circ\text{C}$

5)

Update the properties based on the new film temperature, $(76.4+30)/2 = 53.2 \, ^\circ\text{C}$, and then recalculate natural convection heat transfer coefficient and then update new air temperature. Repeat until no changes. We did not expect you to do any calculation at this step.
Problem #3

Known:
Various rates of generation and elimination

Schematic:

Stomach	Intestine
M_s | M_i
K_s | K_i

M_b (just equation for M_b) as function of time

Find:

M_s in stomach, M_i in intestine, M_b as function of time

Strategy:

Use mass balances

Solution:

Rate in – Rate out + Rate of Generation = Rate of change in Storage

1)

$0 - k_s M_s + 0 = \frac{dM_s}{dt}$

$\ln(M_s) = -k_s t + C$

$M_s(t = 0) = M_0$

$M_s = M_0 \exp(-k_s t)$

2)
\[k_i M_i - k_i M_i - k_a M_i + 0 = \frac{dM_i}{dt} \]
\[k_i M_0 \exp(-k_i t) - (k_i + k_a) M_i + 0 = \frac{dM_i}{dt} \]
\[\frac{dM_i}{dt} + (k_i + k_a) M_i = k_i M_0 \exp(-k_i t) \]

\[c = M_i, \quad P = (k_i + k_a), \quad Q = k_i M_0 \exp(-k_i t) \]
\[c = \left[\exp\left(-\int P \, dt\right) \int Q \exp \left(\int P \, dt\right) \, dt \right] + D \exp\left(-\int P \, dt\right) \]
\[\exp\left(-\int P \, dt\right) = \exp\left(-\int (k_i + k_a) \, dt\right) = \exp(- (k_i + k_a) t) \]
\[\exp\left(\int P \, dt\right) = \exp\left(\int (k_i + k_a) \, dt\right) = \exp((k_i + k_a) t) \]
\[M_i = \left[\exp\left(- (k_i + k_a) t\right) \int Q \exp\left((k_i + k_a) t\right) \, dt \right] + D \exp\left(- (k_i + k_a) t\right) \]
\[\int Q \exp((k_i + k_a) t) \, dt = \int k_i M_0 \exp(-k_i t) \exp((k_i + k_a) t) \, dt \]
\[= k_i M_0 \int \exp((k_i + k_a - k_i) t) \, dt \]
\[= \frac{k_i M_0 \exp((k_i + k_a - k_i) t)}{(k_i + k_a - k_i)} \]
\[M_i = \left[\exp\left(- (k_i + k_a) t\right) \frac{k_i M_0 \exp((k_i + k_a - k_i) t)}{(k_i + k_a - k_i)} \right] + D \exp\left(- (k_i + k_a) t\right) \]
\[M_i(0) = 0 \]
\[0 = \frac{k_i M_0}{(k_i + k_a - k_i)} + D \]
\[D = \frac{-k_i M_0}{(k_i + k_a - k_i)} \]
\[M_i = \left[\frac{k_i M_0 \exp(-k_i t)}{(k_i + k_a - k_i)} \right] + \frac{-k_i M_0}{(k_i + k_a - k_i)} \exp\left(- (k_i + k_a) t\right) \]
\[= \frac{k_i M_0}{(k_i + k_a - k_i)} \left[\exp(-k_i t) - \exp\left(- (k_i + k_a) t\right) \right] \]
3)

\[
Fk_a M_i - k_{el} M_p + 0 = \frac{dM_i}{dt}
\]

\[
Fk_a \frac{k_i M_0}{(k_i + k_a - k_s)} \left[\exp(-k_s t) - \exp(-(k_i + k_a) t) \right] - k_{el} M_p + 0 - 0 = \frac{dM_B}{dt}
\]
Problem #4

#1

Henry

#2

At higher altitudes, there is less oxygen since lower pressure. Therefore there is lower amount of oxygen in lungs due to a small ambient concentration.

#3

As the temperature increases, the solubility of carbon dioxide decreases. Therefore, the CO2 comes out of the solution and the concentration builds up in the head space, increasing the pressure until the can explodes.

#4

Hydrophobic since Partition coefficient = \(C_{\text{drug in solid (tissue)}} / C_{\text{drug in water}} \)

#5

There is less moisture in the air in the winter so the skin surface coming to equilibrium with air also has less water.

#6

\[
C_f = C_0 \exp\left(k_0 \exp\left(-\frac{E}{RT_f} \right) t_1 \right) = C_0 \exp\left(k_0 \exp\left(-\frac{E}{RT_2} \right) t_2 \right) \\
\exp\left(-\frac{E}{RT_1} \right) t_1 = \exp\left(-\frac{E}{RT_2} \right) t_2 \\
\frac{t_2}{t_1} = \exp\left(-\frac{E}{RT_1} \right) / \exp\left(-\frac{E}{RT_2} \right) = \exp\left(-\frac{E}{RT_1} + \frac{E}{RT_2} \right) \\
\ln\left(\frac{t_2}{t_1} \right) = \frac{E}{R} \left(-\frac{1}{T_1} + \frac{1}{T_2} \right)
\]

#7

\(p_{O_2} = H_{a_2} x_{a_2} \) \(p_{CO_2} = H_{c_2} x_{c_2} \)

Compare xO2 and xCO2 to see which one is more soluble.
#8
At the interface of the two phases, the equilibrium is reached first. This is really fast, can be assumed instantaneous for our purpose.

#9

\[c_i = \frac{p_i}{RT} \]

#10

b) harder